728x90
문제
세 점이 주어졌을 때, 축에 평행한 직사각형을 만들기 위해서 필요한 네 번째 점을 찾는 프로그램을 작성하시오.
풀이
x축과 y축에 평행한 직사각형의 네 점의 좌표는 항상 (Xa, Ya), (Xa, Yb), (Xb, Ya), (Xb, Yb) 이다.
이 점을 이용해 나머지 하나의 좌표를 찾았다.
코드
import java.io.*;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st;
StringBuilder sb = new StringBuilder();
st = new StringTokenizer(br.readLine());
int x1 = Integer.parseInt(st.nextToken());
int y1 = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int x2 = Integer.parseInt(st.nextToken());
int y2 = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int x3 = Integer.parseInt(st.nextToken());
int y3 = Integer.parseInt(st.nextToken());
int x4, y4;
if(x1 == x2) x4 = x3;
else if(x2 == x3) x4 = x1;
else x4 = x2;
if(y1 == y2) y4 = y3;
else if(y2 == y3) y4 = y1;
else y4 = y2;
sb.append(x4).append(" ").append(y4);
System.out.println(sb);
}
}
틀린 부분이 있다면 정정해주시면 감사하겠습니다.
궁금한 부분이 있거나, 다른 아이디어가 있으시면 자유롭게 댓글 남겨주세요!
728x90
'[JAVA]백준 알고리즘 > 단계별 - 기하1' 카테고리의 다른 글
[JAVA]백준 알고리즘 4153번 : 직각삼각형 (2) | 2022.12.17 |
---|---|
[JAVA]백준 알고리즘 1085번 : 직사각형에서 탈출 (0) | 2022.12.17 |
[JAVA]백준 알고리즘 1004번 : 어린 왕자 (2) | 2022.12.17 |
[JAVA]백준 알고리즘 1002번 : 터렛 (0) | 2022.12.17 |
[JAVA]백준 알고리즘 3053번 : 택시 기하학 (0) | 2022.12.16 |